Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN
DOI:
https://doi.org/10.4314/p272b841Keywords:
Parking Space Detection, fast R-CNN, transfer learning, computer vision, object detectionAbstract
Automated parking space detection is a crucial application of computer vision in intelligent transportation systems. In this study, we developed a Fast R-CNN-based model for classifying and localizing parking spaces into empty and occupied categories. The model architecture consists of a pre-trained CNN backbone (ResNet50) for feature extraction, a Region Proposal Network (RPN) for generating potential bounding boxes, and Region-of-Interest (RoI) pooling for feature refinement. The classification head utilizes a softmax activation function with cross-entropy loss, while the bounding box coordinates are refined using smooth L1 loss. To facilitate training, we employed Roboflow for dataset annotation, creating ground truth bounding boxes for parking spaces. The model was fine-tuned using transfer learning, leveraging knowledge from the COCO dataset. Training involved hyperparameter optimization, including learning rate scheduling and weight decay, to enhance convergence. Model selection was based on validation loss and accuracy to ensure generalization to unseen data. The model was deployed using Gradio, allowing real-time parking space detection from uploaded images. Despite achieving a final loss of 0.8280, the model exhibited some background noise distortions, impacting detection accuracy. To address this limitation, we explored a lightweight alternative, MiniFasterRCNN, optimized for efficiency with a simpler architecture. The MiniFasterRCNN was trained on a three-class dataset (empty, occupied, background), achieving a validation accuracy of 77.78%. However, attempts to achieve 100% accuracy proved inefficient, highlighting the need for further improvements, such as segmentation techniques (Masked R-CNN). This research demonstrates the feasibility of Fast R-CNN-based models for parking space detection while emphasizing the importance of architectural optimizations and hyperparameter tuning for improved accuracy and robustness in real-world applications
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Olumide Oni, Memory-Enhanced Conversational AI: A Generative Approach for Context-Aware and Personalized Chatbots , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Felicia. O. Isiogugu, P. Pillay, C. C. Okeke, F. U. Ogbuisi, P. U.Nwokoro, Convergence Theorems for Modified Mann Reich-Sabach Iteration Scheme for Approximating the Common Solution of Equilibrium Problems and Fixed Point Problems in Hilbert Spaces with Numerical Examples , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- David Adetunji Ademilua, Advances and Emerging Trends in Cloud Computing: A Comprehensive Review of Technologies, Architectures, and Applications , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- David Adetunji Ademilua, Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Olatunde Ayeomoni, Enhancing Data Provenance, Integrity, Security, and Trustworthiness in Distributed and Federated Multi-Cloud Computing Environments , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Itoro Esiet Ukpe, Oluwatosin Atala, Olu Smith, Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



