Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN
DOI:
https://doi.org/10.4314/p272b841Keywords:
Parking Space Detection, fast R-CNN, transfer learning, computer vision, object detectionAbstract
Automated parking space detection is a crucial application of computer vision in intelligent transportation systems. In this study, we developed a Fast R-CNN-based model for classifying and localizing parking spaces into empty and occupied categories. The model architecture consists of a pre-trained CNN backbone (ResNet50) for feature extraction, a Region Proposal Network (RPN) for generating potential bounding boxes, and Region-of-Interest (RoI) pooling for feature refinement. The classification head utilizes a softmax activation function with cross-entropy loss, while the bounding box coordinates are refined using smooth L1 loss. To facilitate training, we employed Roboflow for dataset annotation, creating ground truth bounding boxes for parking spaces. The model was fine-tuned using transfer learning, leveraging knowledge from the COCO dataset. Training involved hyperparameter optimization, including learning rate scheduling and weight decay, to enhance convergence. Model selection was based on validation loss and accuracy to ensure generalization to unseen data. The model was deployed using Gradio, allowing real-time parking space detection from uploaded images. Despite achieving a final loss of 0.8280, the model exhibited some background noise distortions, impacting detection accuracy. To address this limitation, we explored a lightweight alternative, MiniFasterRCNN, optimized for efficiency with a simpler architecture. The MiniFasterRCNN was trained on a three-class dataset (empty, occupied, background), achieving a validation accuracy of 77.78%. However, attempts to achieve 100% accuracy proved inefficient, highlighting the need for further improvements, such as segmentation techniques (Masked R-CNN). This research demonstrates the feasibility of Fast R-CNN-based models for parking space detection while emphasizing the importance of architectural optimizations and hyperparameter tuning for improved accuracy and robustness in real-world applications
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Olumide Oni, Memory-Enhanced Conversational AI: A Generative Approach for Context-Aware and Personalized Chatbots , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Imam Akintomiwa Akinlade, Musili Adeyemi Adebayo, Ahmed Olasunkanmi Tijani, Chiamaka Perpetua Ezenwaka, Obafemi Ibrahim Sikiru, Emmanuel Ayomide Oseni, The Role of Machine Learning Models in Optimizing High-Volume Customer Engagement and CRM Transformation , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Emmanuel Oluwemimo Falodun, Faith, Technology, and Safety: A Theoretical Framework for Religious Leaders Using Artificial Intelligence to Advocate for Gun Violence Prevention , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Yisa Adeniyi Abolade, Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Adebayo Adegbenro, Arinze Madueke, Aniedi Ojo, Cynthia Alabi, AI-Driven Wealth Advisory: Machine Learning Models for Personalized Investment Portfolios and Risk Optimization , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Felicia Uchechukwu Okwunodulu, Stella Mbanyeaku Ufearoh, Amaku James Friday, Angela Nwamaka Anim, Colorimetric detection of Hg(II) ions present in industrial wastewater using zinc nanoparticle synthesized biologically with Rauwolfia vomitoria leaf extract , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Abubakar Tahiru, Oluwasanmi M. Odeniran, Shardrack Amoako, Developing Artificial Intelligence-Powered Circular Bioeconomy Models That Transform Forestry Residues into High-Value Materials and Renewable Energy Solutions , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
You may also start an advanced similarity search for this article.



