Investigating the Role of Machine Learning Algorithms in Customer Segmentation
DOI:
https://doi.org/10.4314/w342gz27Keywords:
Machine Learning, Customer Segmentation, Supervised Learning, Unsupervised Learning, Deep Learning, Explainable AIAbstract
In the rapidly evolving digital landscape, customer segmentation has become a cornerstone of effective marketing strategies, enabling businesses to tailor their approaches based on shared characteristics and behaviours. Traditional segmentation methods, however, often fall short of capturing the complexity and dynamism of modern consumer behaviour due to their reliance on static, rule-based criteria. This paper investigates the transformative role of machine learning (ML) algorithms in enhancing customer segmentation by improving accuracy, personalization, and efficiency. Specifically, it explores supervised learning techniques such as decision trees and support vector machines, which offer predictive capabilities, as well as unsupervised methods like k-means clustering and hierarchical clustering, which uncover hidden patterns without predefined labels. Additionally, deep learning models and neural networks are discussed for their ability to recognize sophisticated patterns and enable hyper-personalized experiences. Despite these advantages, challenges remain, including data privacy concerns, algorithmic bias, and the need for ethical governance. The integration of ML into customer segmentation reshapes business decision-making, offering dynamic profiling, improved customer retention, and higher conversion rates. However, balancing AI-driven insights with human oversight is crucial to ensure alignment with brand values and consumer expectations. This study synthesizes existing research, theoretical foundations, and practical applications to provide a comprehensive understanding of ML's impact on customer segmentation. Furthermore, it highlights emerging trends such as explainable AI (XAI), reinforcement learning, and the integration of IoT data, setting the stage for future advancements in this field.
Most read articles by the same author(s)
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
Similar Articles
- Adebayo Adegbenro, Arinze Madueke, Aniedi Ojo, Cynthia Alabi, AI-Driven Wealth Advisory: Machine Learning Models for Personalized Investment Portfolios and Risk Optimization , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Abubakar Tahiru, Oluwasanmi M. Odeniran, Shardrack Amoako, Developing Artificial Intelligence-Powered Circular Bioeconomy Models That Transform Forestry Residues into High-Value Materials and Renewable Energy Solutions , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Olaleye Ibiyeye, Joy Nnenna Okolo, Samuel Adetayo Adeniji, A Comprehensive Evaluation of AI-Driven Data Science Models in Cybersecurity: Covering Intrusion Detection, Threat Analysis, Intelligent Automation, and Adaptive Decision-Making Systems , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Christianah Oluwabunmi Ayodele, Esther Oludele Olaniyi, Chukwuebuka Francis Udokporo, Applications of AI in Enhancing Environmental Healthcare Delivery Systems: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Itoro Esiet Ukpe, Oluwatosin Atala, Olu Smith, Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



