Investigating the Role of Machine Learning Algorithms in Customer Segmentation
DOI:
https://doi.org/10.4314/w342gz27Keywords:
Machine Learning, Customer Segmentation, Supervised Learning, Unsupervised Learning, Deep Learning, Explainable AIAbstract
In the rapidly evolving digital landscape, customer segmentation has become a cornerstone of effective marketing strategies, enabling businesses to tailor their approaches based on shared characteristics and behaviours. Traditional segmentation methods, however, often fall short of capturing the complexity and dynamism of modern consumer behaviour due to their reliance on static, rule-based criteria. This paper investigates the transformative role of machine learning (ML) algorithms in enhancing customer segmentation by improving accuracy, personalization, and efficiency. Specifically, it explores supervised learning techniques such as decision trees and support vector machines, which offer predictive capabilities, as well as unsupervised methods like k-means clustering and hierarchical clustering, which uncover hidden patterns without predefined labels. Additionally, deep learning models and neural networks are discussed for their ability to recognize sophisticated patterns and enable hyper-personalized experiences. Despite these advantages, challenges remain, including data privacy concerns, algorithmic bias, and the need for ethical governance. The integration of ML into customer segmentation reshapes business decision-making, offering dynamic profiling, improved customer retention, and higher conversion rates. However, balancing AI-driven insights with human oversight is crucial to ensure alignment with brand values and consumer expectations. This study synthesizes existing research, theoretical foundations, and practical applications to provide a comprehensive understanding of ML's impact on customer segmentation. Furthermore, it highlights emerging trends such as explainable AI (XAI), reinforcement learning, and the integration of IoT data, setting the stage for future advancements in this field.
Most read articles by the same author(s)
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
Similar Articles
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Mujeeb Abdulrazaq, Rare-Event Prediction in Imbalanced Data: A Unified Evaluation and Optimization Framework for High-Risk Systems , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Olumide Oni, Kenechukwu Francis Iloeje, Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Robinson Ogochukwu , Comprehensive Review of Artificial Intelligence Contributions to Understanding Music, Religion, and Influencing Future and Emerging Global Trends Robinson Ogochukwu Isichei , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



