Investigation of Snail shells as an Adsorbent and Precursor for the synthesis of Calcium Oxide Nanoparticles for the Removal of Amoxicillin from Aqueous Solution
Keywords:
Resource recovery, snail shells, calcium oxide nanoparticles, remediation, amoxicillinAbstract
Snail shells are rich in CaCO3 as its major constituent. Consequently, its application for the adsorption removal of contaminants has been linked to the presence of this compound. In this study, comparative efforts were made to adopt snail shells in a direct and indirect approach toward the adsorption removal of amoxicillin from an aqueous solution. The direct approach was implemented by using the powder samples obtained from crushing the snail shells. The indirect method was centred on resource recovery technology, which involved the fabrication of calcium nanoparticles from the crushed powdered sample. Both sets of adsorbents were candidates for the batch adsorption removal of amoxicillin from water. The adsorption removal efficiency by the nanoparticles showed an outstanding gap regarding their performance compared to the crude samples. However, adsorption in all cases was influenced by temperature, concentration of the drug, ionic strength, time and pH. The pseudo-second order, intraparticle diffusion and liquid diffusion showed favourable fits to the experimental data while the thermodynamic values showed exothermic adsorption for the nanoparticles and endothermic for the crude sample. The adsorption behaviours of both adsorbents displayed excellent fitness for the Langmuir model. Based on the results of the study, Nanoparticles obtained from snail shells have better adsorption properties than the crude samples due to enhanced surface properties
Published
Issue
Section
Similar Articles
- Nsikak Bassey Essien, Rice Husk as Precursor for Silicon Oxide Nanoparticles: Synthesis and Characterization , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Mu’awiya Baba Aminu, Sangodiji Enoch Ezekiel, Changde A. Nanfa, Anako Shefawu Onize, Daniel Chukwunonso Chukwudi, Facies and geochemical characteristics of the Igumale Formation, Lower Benue Trough, Nigeria , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Henrietta Ijeoma Kelle, Maureen Nkemdilim Chukwu, Emily Osa Iduseri, Emeka Chima Ogoko, Rawlings Abem Timothy, Absorption Studies of Some Agricultural Solid Wastes as Biosorbent for the Clean-up of Oil Spill , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Anduang Ofuo Odiongenyi, Influence of Sol Gel Conversion on the Adsorption Capacity of Crab Shell for the Removal of Crystal Violet from Aqueous Solution , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- Kabiru Usman, H. Abba, O. R. A. Iyun, Preparation and Characterization of African Star Apple Seed Shell (Chrysophyllum Africanum) For The Removal of Acid Red 9 , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- Richard Alexis Ukpe, Joint effect of halides and Ethanol Extract of Sorghum on the Inhibition of the Corrosion of Aluminum in HCl , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Charles German Ikimi, Ijeoma Cynthia Anyaoku, Maryann Nonye Nwafor, Biomarker Potentials of Postmortem Vitreous Biochemical Parameters For Resolving Disputed Causes of Death by Drowning Using Animal Models , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Gideon Wyasu, Batch adsorption of Mn2+ and Co3+ from Refinery wastewater using activated carbon from epicarp of Detarium microcarpum and Balanites aegyptiaca shells , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- Abdulfatai A. Otori, Akeem A. Jimoh, John T. Mathew, Development of Heterogeneous Catalyst from Waste Cow Bone Using Parinarium Macrophylum Seed Oil for Biodiesel Production , Communication In Physical Sciences: Vol. 7 No. 3 (2021): VOLUME 7 ISSUE 3
- Gideon Wyasu, Batch adsorption of Hg2+ and As3+ ions in Hospital wastewater using activated carbon from Balanites aegyptiaca and Detarium microcarpum , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
You may also start an advanced similarity search for this article.