Computational Modeling and validation of Indoor Radon Gas Dynamics and Accumulation Using Ansys Fluent Simulation
Keywords:
Computational modelling, Indoor Radon gas, Gas dynamic, Ansys fluent simulationAbstract
Radon is a naturally occurring radioactive gas that poses significant health risks when accumulated in indoor environments. Understanding its transport and accumulation dynamics is crucial for effective mitigation strategies. This study aims to model radon gas transport using the Navier-Stokes equation and computational fluid dynamics (CFD) simulations, validated with experimental data from residential buildings in Adamawa, Gombe, and Yobe States, Nigeria. The research investigates the effects of architectural parameters such as room height, foundation thickness, ventilation rate, and humidity on indoor radon levels. Ansys Fluent 2025 R1 was employed to develop a 3D numerical model incorporating key boundary conditions, air exchange rates, and radon entry dynamics. Experimental validation was conducted using Solid State Nuclear Track Detectors (SSNTDs) deployed over six months. Results showed that measured radon concentrations ranged from 193.31 Bq/m³ to 73.19 Bq/m³, while simulated values ranged from 187.30 Bq/m³ to 67.86 Bq/m³, with relative deviations of 3.11%, 5.20%, and 7.28% for different locations. Increasing foundation thickness from 2 cm to 10 cm reduced radon concentration from 210 Bq/m³ to 80 Bq/m³, while raising room height from 2.5 m to 4.0 m decreased radon levels from 200 Bq/m³ to 60 Bq/m³. Sensitivity analysis demonstrated that improved ventilation significantly lowered radon accumulation, whereas poor air exchange led to increased buildup. The study introduces an innovative application of CFD modeling for optimizing indoor architectural designs to mitigate radon exposure. Statistical validation using root mean square error (RMSE) and correlation coefficient (R²) confirmed a strong agreement between experimental and simulated data. The findings emphasize the importance of incorporating adequate ventilation, increased foundation thickness, and higher room ceilings in building designs to minimize radon-related health risks. It is recommended that building regulations and construction practices integrate these strategies to enhance indoor air quality and protect public health.
Downloads
Published
Issue
Section
Similar Articles
- Yakubu Isa, Radiya Muhammad Said, Juliet Wallen Piapna, Abdulhaq Bashir, Development and Applications of the Type II Half-Logistic Inverse Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Promise. A. Azor, Amadi Ugwulo Chinyere, Mathematical Modelling of an Investor’s Wealth with Different Stochastic Volatility Models , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Augustine Odiba Aikoye, Theoretical and Biochemical Information studies on Compounds Detected in GCMS of Ethanol Extract of Chromolaena odorate Leaf , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- V. A. Ezekoye, Generation and Storage of Biogas Produced from the Mixture of Cassava Peels and Cow Dung , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- John P. Shinggu, Emmaneul Etim Etim, Alfred Onen, Protonation-Induced Structural and Spectroscopic Variations in , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Stephen Eyije Abechi, Casmir Emmanuel Gimba , Adamu Uzairu, Odike Jotham Ocholi, Comparative Analysis of Methods of Activated Carbon Surface Area Determination , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Solar Activity and Dynamics of Particles in the Ionosphere , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- F. S. Bakpo, A Petri Net Computational Model for Web-based Students Attendance Monitoring , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Salihu Takuma, Siaka Abdulfatai Adabara, Kamal Suleiman Kabo, Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Some Plants Extract , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.