Development and Applications of the Type II Half-Logistic Inverse Weibull Distribution
DOI:
https://doi.org/10.4314/9zk6e341Keywords:
Type II Half-Logistic , Exponentiated-G, Inverse Weibull distribution, Hazard function, Reliability function, Maximum likelihood, Order StatisticsAbstract
A variety of distribution classes have emerged by expanding or generalizing well-known continuous distributions to enhance their flexibility and adaptability across various fields. One such distribution is the Inverse Weibull (IW) distribution, introduced by Keller and Kanath in 1982, which has proven effective in modelling failure characteristics. Over the years, several extensions of the IW distribution have been developed, including the Beta Inverse Weibull, Kumaraswamy-Inverse Weibull, and many others. This paper introduces a novel extension called the Type II Half-Logistic Inverse Weibull (TIIHLEtIW) distribution, derived from the Type II Half-Logistic Exponentiated-G (TIIHLEt-G) family proposed by Bello et al. in 2021. The TIIHLEtIW distribution incorporates two additional shape parameters, enhancing its flexibility. We provide the cumulative distribution function (cdf), probability density function (pdf), and key statistical properties, including moments, moment-generating function, reliability function, hazard function, and quantile function. Maximum likelihood estimation (MLE) is employed for parameter estimation, and a simulation study evaluates the performance of the MLEs. Finally, the applicability and superiority of the TIIHLEtIW distribution are demonstrated through a comparative study using two real datasets, showcasing its improved fit over several established distributions.
Downloads
Published
Issue
Section
Similar Articles
- Idayat Abubakar Salau, Aminu Suleiman Mohammed, Hussaini Garba Dikko, Type I Half-Logistic Exponentiated Kumaraswamy Distribution With Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Jibril Yahaya Kajuru, Hussaini Garba Dikko, Aminu Suleiman Mohammed, Aliyu Ibrahim Fulatan, Generalized Odd Gompertz-G Family of Distributions: Statistical Properties and Applications , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Kolawole Ismail Adekunle, Abubakar Yahaya, Sani Ibrahim Doguwa, Aliyu Yakubu, On the Exponentiated Type II Generalized Topp-Leone-G Family of Distribution: Properties and Applications , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Gulumbe S. Usman, Umar Usman, Aremu Kazeem Olalekan, Odeyale, Abideen Babatunde , The Generalized Odd Generalized Exponential Gompertz Distribution with Applications , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Benjamin Effiong, Emmanuel Akpan, Specification Procedure For Symmetric Smooth Transition Autoregressive Models , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Ase M. Esabai, Edikan E. Akpanibah, Sylvanus K. Samaila, On Investment Model for a CARA Pension Scheme Member with Return of Contributions Clause for Mortgage Housing Scheme , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Promise A. Azor, Edikan E. Akpanibah, Okechukwu I. Edozieunor, Closed Form Solutions of a Re-Insurer’s Surplus, Stochastic and Time-Dependent Investment Returns with Random Parameters , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Augustine Osondu Friday Ador, Isaac Mashingil Mankili, Franka Amaka Nwafor, Silas Abahia Ihedioha, Bright Okore Osu, Analyzing Market Price Equilibrium Dynamics with Differential Equations: Incorporating Government Intervention and Market Forces , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Chisimkwuo John, Okoroafor Promise Izuchukwu, Amobi Chinenye Theresa, Application of Factor Analysis in the Modelling of Inflation Rate in Nigeria , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
You may also start an advanced similarity search for this article.