Investigation of the Structural and electronic properties of Ternary AB₂X₄ based material via Density Functional Theory (DFT) for Optoelectronic Applications
DOI:
https://doi.org/10.4314/tbfjqx20Keywords:
Density functional theory, Band gap, Total density of state, Partial density of stateAbstract
Developing inexpensive, non-toxic, high-efficiency, earth-abundant optoelectronics material is critical for implementing electronic devices. CdAl2S4 is a promising earth-abundant absorber AB₂X₄ material that has attracted attetructural and electronic properties such as the band gap, density of state, and partial density of state. This information is, however, very essential for the design and fabrication of CdAl2S4 optoelectronics devices to achieve higher power conversion efficiencies. In this article, first-principles calculation based on the state-of-the-art methodology of density functional theory (DFT) has been employed to comprehensively characterize the structural and electronic properties of CdAl2S4 material. From band structure analysis, CdAl2S4 is
demonstrated to have a direct band gap with a predicted band gap of 2.322 eV. It is evident from the calculated Total Density of State (TDOS) and Partial Density of State (PDOS) that CdAl2S4 exhibited the characteristics of a semiconductor and it is a potential material for optoelectronic applications. This study provides a comprehensive understanding of AB₂X₄ materials' structural and electronic behaviors, paving the way for their development in next-generation optoelectronic technologies.
Similar Articles
- Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola,, Adegboyega Anthony Babajide, Oyebode Daniel Oluwatimilehin, Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Gideon Wyasu, The influence of natural fermentation, malt addition and soya fortification on the sensory and physio-chemical characteristics of gyok-millet gruel , Communication In Physical Sciences: Vol. 4 No. 1 (2019): VOLUME 4 ISSUE 1
- Runde Musa, Uzairu Muhammad Sada, Nickel-doped Zeolite cluster as adsorbent material for the adsorption of biodiesel oxidation products: Approach from computational study , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Isonguyo Michael Ukpong , Emmanuel Wilfred Okereke, Inverse Cube Root Transformation: Theory and Application to Time Series Data , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Henrietta Ijeoma Kelle , Musa Runde, Valorization of an Agricultural Waste-Corncob: Investigation of Potassium Oxide from Corncob Ash Crystals as an Antiseptic and Disinfectant Agent , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Babatunde Ogunyemi, Quantum Chemical Insights into the Antioxidant Mechanisms of Luteolin and Isorhamnetin: Elucidating Structure-Reactivity Relationships, Pharmacokinetics, and Toxicity for Therapeutic Potential , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Richard Alexis Ukpe, Synthesis and Characterization of Calcium Oxide Nanoparticles (CaO-NPs) from Waste Oyster Shells , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Funmilayo Ayedun, Probing the Effects of Atomic Position Changes on the Structural, Electronic, and Thermoelectric Properties of the Half-Heusler ZrPtPb Compound: A First-Principles Study , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- I. Yinusa, Phytochemical Screening, GC-MS And FTIR Analysis of Ethanol Extract of Piliostigma thonningii (schum Milne—Redth) Leaf , Communication In Physical Sciences: Vol. 5 No. 1 (2020): VOLUME 5 ISSUE 1
- Rashida Adamu Bulkachuwa, Bello Y. Idi, Musa Muhammad Salihu, Abdullahi Lawal, Salisu Tata, Evaluation of Excessive Lifetime Cancer Risk Due to Gamma Radiation on Rocks in Shira Village, Bauchi State Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.