Subacute Effects of Sodium Lauryl Ether Sulfate on Oxidative Enzymes and Liver Responses in Clarias gariepinus: Dose and Time Dependent Effects
Keywords:
Sodium lauryl ether sulfate, Clarias gariepinus, Superoxide dismutase,, Alanine aminotransferase, HistologyAbstract
Communication in Physical Sciences, 2021, 7(4): 577-589
Authors: Eneni Roberts Inala, Thomas Ohwofasa Ikpesu
Received: 04 September 2021/Accepted 16 December 2021
The present study was performed to determine the sublethal effects of sodium lauryl ether sulfate (SLES) on oxidative stress
enzymes and liver response enzymes in Clarias gariepinus. The fish that was self-grown were exposed to the concentrations of SLES observed in the field (0.00, 1.00,1.50, 2.00, 2.50) mg/L for 30 days. Standard protocols were used to quantify superoxide dismutase and alanine aminotransferase activities in the blood of the fish. The hematoxylin and eosin histological examination procedure was used to determine the change in the treated fish’s liver. Superoxide dismutase showed a remarkable initiatory increment followed by a descending pattern. Also, during exposure times, alanine aminotransferase activity increased markedly with incrementing concentrations of SLES, and duration of the exposure. Vacuolar degeneration, severe necrosis, dilation of sinusoids, desquamation of the hepatocytes, lipid accumulation, clusters of lymphocytes, and fibroblast are major pathological alterations observed in the fish exposed to SLES, and were doses and timedependent. These results indicate that exposure
to this anionic surfactant modifies changes in oxidative stress enzymes, and the induction of these enzymes correlated with the pathological changes in the liver of the fish. This study has shown that sodium lauryl ether sulphate can alter an organism's system even at very low doses, thus indiscriminately releasing these surfactants, especially anionic surfactants into the environment are admonished to be periodically monitored by environmental regulatory agencies. For a more informed
public, environmental education and advocacy should be carried out regarding the effects on fisheries and, subsequently, human health through fish consumption and groundwater contamination
Downloads
References
Almeida, Â., Freitas, R., Calisto, V., Esteves, V. I., Schneider, R. J., Soares, A. M. & Figueira, E. (2015). Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Compar. Biochem. Physiol. C Toxicol. Pharmacol, 172, pp. 26–35
Andy, T. (2014). Effect of 2, 4-D Pesticide on Fish Physiology and Its Antioxidant Stress. World Journal of Fish and Marine
Sciences, 6 (1), pp. 98-100.
Ansari, M.O., Parveen, N., Ahmad, M. F., Wani, A. L., Afrin, S., Rahman, Y., Jameel, S., Khan, Y. A., Siddique, H .R., Tabish, M.
& Shadab G. G. H. A. (2019). Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci. Rep. 9, https://doi.org/ 10.1038/s41598-019- 43188-5
APHA. (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA,
Am. Water Work. Assoc. Public Work. Assoc. Environ. Fed. 552. doi: https://doi.org/10.2105/AJPH.51.6.940-a.
Barra, C. A., Bottoni, P. & Grenni, P. (2013). Microcosm studies to evaluate microbial potential to degrade pollutants in soil and
water ecosystem. Microchem. J., 107, pp. 126-130.
Begum, G. (2004). Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish Clarias sbatrachus (linn)
and recovery response Aquatic Toxicology, 66(1), pp. 83-–92.
Bhattacharya, R., Singh, P., John,J. J. & Gujar, N .L. (2018). Oxidative damage mediated iNOS and UCP 2 upregulation in rat brain
after sub- acute cyanide exposure: dose and time-dependent effects. Drug Chem Toxicol. https://doi.org/10.1080/01480545.2018.14
Black, J. G. & Howes, D. (1992). Absorption, metabolism and excretion of anionic surfactants. In anionic surfactants: biochemistry, toxicology and dermatology, Second Edition, Editors: Gloxhuber C and Kunstler K, Marcel Dekker, New York.
Brito, I. A., Freire, C. A., Yamamoto, F. Y., Assis, H. C. S., Souza-Bastos, L.R., Cestari, M. M. & Ribeiro, C. A. O. (2012).
Monitoring water quality in reservoirs for human supply through multi-biomarker evaluation in tropical fish. Journal of Environmental Monitoring, 14(2), pp. 615- 625. doi: 10.1039/c2em10461j
Burgos-Aceves, M. A., Cohen, A., Paolella, G., Lepretti, M., Smit, Y., Faggio, C. & Lionetti, L. (2018). Modulation of mitochondrial functions by xenobioticinduced microRNA: from environmental sentinel organisms to mammals. Sci. Total Environ. doi. https://doi.org/10.1016/j.scitotenv.2018.07 .109
Chaturvedi, V. & Kumar A. (2010). Toxicity of sodium dodecyl sulfate in fishes and animals.A review. Int. J. Appl. Biol. Pharm. Technol. 1, 630–633
Congleton, J. L. & LaVoie, W. J. (2001).Comparison of blood chemistry values for samples collected from juvenile Chinook salmon by three methods. Journal of Aquatic Animal Health,13, pp. 168–172.
Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environ. Int. 28, 337–348
Faggio, C., Tsarpali, V. & Dailianis, S. (2018). Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Sci.
Total Environ. doi. https://doi.org/10.1016/ j. scitotenv.2018.04.264
Farombi, E. O., Adelowo, O. A. & Ajimoko, Y. R. (2007). Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health. 4(2), pp. 158-
Fatma, N., Panda, M. & Ansari, W. H. (2015). Environment-friendly ester bonded geminisurfactant: mixed micellization of
-E2-14 with ionic and nonionic conventional surfactants. J. Mol. Liq. 211, pp. 247–255.
Freitas, R., Coppola, F., Costa, S., Manzini, C., Intorre, L., Meucci, V., Soares, A. M., Pretti, C. & Solé, M. (2019). Does salinity modulate the response of Mytilus galloprovincialis exposed to triclosan and diclofenac? Environ. Pollut., 251, pp. 756–765.
Freitas, E. C., & Rocha, O. (2012). Acute and chronic effects of atrazine and sodium dodecyl sulfate on the tropical freshwater
cladoceran Pseudosida ramosa. Ecotoxicology 21,pp.1347–1357.
Giari, L., Simoni, E., Manera, M. & Dezfuli, B. S. (2008). Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicology and Environmental Safety, 70(3), pp. 400-410.
Hampel, M., Ortiz-Delgado, J. B., Sarasquete, C., & Blasco,J. (2008). Effects of sediment sorbed linear alkylbenzene sulphonate on
juveniles of the Senegal sole, Solea senegalensis: toxicity and histological indicators. Histology and histopathology, 23, pp. 87-100.
Hemalatha, D., Amala, A., Rangasamy, B., Nataraj, B. & Ramesh, M. (2015). Sublethal Toxicity of Quinalphos on Oxidative Stress and Antioxidant Responses in a Freshwater Fish Cyprinus Carpio. Environmental Toxicology, pp. 1- 13.
Herman, D. S. & Geraldine, T. (2009). Venkatesh, Influence of minerals on leadinduced alterations in liver function in rats exposed to long-term lead exposure. Journal of Hazardous Materials, 166(2-3), pp. 1410–1414.
Hrycay, E. G. & Bandiera, S. M. (2015). Involvement of cytochrome P450 in reactive oxygen species formation and cancer. In: Advances in Pharmacology. Academic Press Inc., pp. 35–84.
Ibrahim, N. M., Eweis, E. A., El-Beltagi, H. S & Abdel-Mobdy, Y. E. ( 2012). Effect of lead acetate toxicity on experimental male albino rat,” Asian Pacific Journal of Tropical Biomedicine, 2(1), pp. 41–46
Jackson, M., Eadsforth, C., Schowanek, D., Delfosse, T., Riddle, A. & Budgen, N. (2016). A comprehensive review of several surfactants in marine environments: fate and ecotoxicity. Environ. Toxicol. Chem. doi. https://doi.org/10.1002/etc.3297
Jurado, E., Fernandez-Serrano, M., Lechuga, M. & Rios, F. (2011). Environmental Impact of Ether Carboxylic Derivative Surfactants. Journal of Surfactants and Detergents, 15(1), pp. 1–7.
Jee, J. H., Masroor, F. & Kang, J.C. (2005). Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, Sebastes schlegeli (Hilgendorf) Aquac. Res., 36, pp. 898-905.
Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. doi. https://doi. org/10.1186/s12937-016-0186-5.
Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka J. (2005). Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere, 58(9), pp. 1249-1253.
McGregor, D.(1988). Responses of the L5178Y tk+/tk- mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environ. Molec. Mutagen. 12,pp. 85–154.
Messina, C. M., Faggio, C., Laudicella, V. A., Sanfilippo, M., Trischitta, F. & Santulli, A. (2014). Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus galloprovincialis): regulatory volume decrease (Rvd) and modulation of
biochemical markers related to oxidative stress. Aquat. Toxicol. 157, pp. 94–100.
Mortelmans, K. (1986). Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ.
Mutagen. 8, pp. 1–119.
Mosleh, Y. Y., Mofeed, J., Afifi, M. & Almaghrabi, O.A. (2014). Biological effects of pyrimethinal on aquatic worms (Tubifex tubifex) under laboratory conditions. Bull. Environ. Contam. Toxicol. 92, pp. 85–89.
Nunes, B., Carvalho, F. & Guilhermino, L. (2005). Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicological and Environmental. Safety, 61, pp. 413–419.
Nunes, B., Gaio, A. R., Carvalho, F. & Guilhermino, L. (2008). Behaviour and biomarkers of oxidative stress in Gambusia holbrooki
after acute exposure to widely used pharmaceuticals and a detergent. Ecotoxicol. Environ. Saf. 71 (2), pp. 341–354.
Paris-Palacios, S., Mosleh, Y.Y., Almohamad, M., Delahaut, L., Conrad, A., Arnoult, F. & Biagianti-Risbourg, S. (2010). Toxic
effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): A study of
significance of autotomy and its utility as a biomarker. Aquat. Toxicol. 98, pp. 8– 14.
Palanivelu, V. K. & Vijayavel, S.E. (2005). Balasubramanian and M. P. Balasubramanian: lnfluence of insecticidal derivative (Cartap Hydrochloride) from the marine polychaete oncertain enzyme systems of the freshwater fish Oreochromis mossambicus. J. Environ. Biol., 26, pp.191-196.
Paulo, A. M. S., Plugge, C .M., Garcì a-Encina, P. A. & Stam, A. J .M. (2013). Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitryifing bacteria. Int. Biodeterior. Biodegrad. 84, pp. 14-20.
Ranji, H., Babajanzadeh, B. & Sherizadeh, S. (2019). Detergents and surfactants: a brief review. Open Access J. Sci., 3, https://doi.org/10.15406/oajs.2019.03.001 38
Rejeki, S., Desrina, D. & Mulyana, A.R. (2008). Chronic effects of detergent surfactant (Linear Alkylbenzene Sulfonate / LAS) on the growth and survival rate of sea bass (Lates calcalifer Bloch), larvae; Journal of Coastal Development, p. 213.
Rocha, A., Gomes, P.V., Ngan, M.J., Passos, R.R., & Furia, J.V. (2007). Effects of anionic surfactant and salinity on the bioenergetics of juveniles of Centropomus parallelus (Poey). Ecotoxicology and Environmental Safety, 3, pp. 397- 404.
Rodríguez, A., Gisbert, E., Rodríguez, G., & Castelló-Orvay, F. (2005). Histopathological observations in European glass eels (Anguilla anguilla) reared under different diets and salinities. Aquaculture, 244(1-4), pp. 203-214.
Stara, A., Machova, J. & Velisek, J. (2012). Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ. Toxicol.Phar. 33, pp. 334–43.
Sayeed, I., Parvez, S. & Pandey, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish Channa punctatus Bloch. Ecotoxicol Environ Saf., 56(2), pp. 295–301.
Vander, O.R.J., Beber, E. & Vermeulen, N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment a review. Environmental Toxicology and Pharmacology, 13, pp. 53-149.
Velmurugan, B.M., Selvanayagam, E. & Unlu, E. (2007). The effects of fenvalerateon different tissues of freshwater fish Cirrhinus mrigala. J. Environ. Sci. Health (B), 42, pp. 157-163.
Yao, L., Zhao, J., Liu, Y., Zhang, Q. & Ying, G.G. (2018). Personal care products in wild fish in two main Chine rivers: Bioaccumulation potential and human health risks. Science of the Total Environment, 621, pp. 1093-1102.
Ying, G.G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int. 32(3), pp. 417-431.
Zikic, R.V., Stajn, S., Pavlovic, Z., Ognjanovic, B.T. & Saicic, Z.S. (2001). Activities of superoxide dismutase and catalase in erythrocyte and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res., 10, pp.105-111.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 The Journal and the author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.