Crystal Structure, in Silico Studies and Anti-diabetic Potentials of 3-e-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1h-pyrazol-4-yl)hyd -razinylidene]pentane-2,4-dione(hdpp)and its Cu(II) and Ni(II) complexes
Keywords:
Hydrazone, X- ray crystallography, Co(II), Ni(II), Cu(II) and Fe(III) complexes, In silico and antidiabetic studiesAbstract
Communication in Physical Sciences, 2024, 11(3): 589-606
Authors: Ndidiamaka. Justina Agbo, Pius Onyeoziri Ukoha, Uchechukwu Susan Oruma*, Oguejiofo T. Ujam, Tania Groutso, Okereke Solomon Ejike
Received: 02 April 2024/Accepted: 06 July 2024
The hydrazone, 3-E-[2-(1,5-Dimethyl-3-oxo-2-Phenyl-2,3-Dihydro-1h-Pyrazol-4-yl)Hydrazinylidene]Pentane-2,4-dione, HDPP was synthesized by coupling diazotized 4-aminoantipyrine with pentan-2,4-dione at < 5 0C. The Cu(II) and Ni(II) complexes were prepared by refluxing stoichiometric amounts of metal salts and HDPP in ethanol for 6 h at 60 0C. The ligand and complexes were characterized by UV-Vis, IR, NMR, and mass spectroscopies as well as by C, H, N, S elemental analysis, conductivity measurement, quantitative chloride determination and single crystal X-ray diffraction analysis. The compounds were screened in vitro for antibacterial activity against P. aeruginosa, S. aureus, Ecoli(Eco 6), E. coli(13), B. subtilis, S. pneumonia, P. mirabilis, S. intermedius and K. pneumoniae. The compounds were assayed for in silico molecular docking and in vivo anti-diabetic potentials. FTIR data showed shifts in ⱱ(C=O), ⱱ(N=H) and ⱱ(C=N) of the complexes implicating the involvement of these groups in complexation. Proton NMR shifts accounted for the methyl, phenyl and N-H protons of the ligand but indecipherable for the complexes due to paramagnetic effects. Conductivity values of HDPP and complexes showed the ligand and its complexes to be neutral. X-ray crystallographic data of HDPP show the ligand to have orthorhombic crystals with pbca unit cell a = 28.501(4) Å, α = 90°, b = 15.0494(19) Å, β = 90°; and c = 7.3234(9) Å, γ = 90° with Z=8. HDPP and its complexes exist in hydrazo form instead of azo form. It showed no activity against test organisms, but the complexes showed various degrees of sensitivities against the test bacterial strain at 10μg/cm3. Acute toxicity (LD50) tests showed that HDPP and [Cu(HDPP)2Cl2] were non-toxic. In silico studies proved them to be drug candidates for diabetes with good oral bioavailability. In vivo, antidiabetic tests showed HDPP and [Cu(HDPP)2Cl2] to reduce the blood level of diabetic rats to within 61 to 67% better than the control drug glibenclamide within 14 days of treatment.
Downloads
References
Abdel-Wahab, B.F., Awad, G. E., & Badria, F. A .(2011). Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles”., Eur. J. Med.Chem., 46, pp. 1505 – 1511.
Ajayeoba, T, A., Akinyele, O. F., & Oluwole, A. O. (2017).Synthesis, characterisation and antimicrobial studies of nixed Nickel(II) and
Copper(II) complexes of Aroylhydrazones with 2,21-bipyridine and 1,10-phenanthroline. Ife Journal of Science, 19, 1, pp. 119-132. https://dx.doi.org/10.4314/ijs.v19i1.12
Akter, K., Lanza, E. A., Martin, S. A., Myronyuk, N., Rua, M., & Raffa, R. B. (2011). Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment. Br J Clin Pharmacol., 71, pp. 365–376.
Blonde, L. (2005). Current challenges in diabetes management; Clin.Cornerstone, 7, 3, pp. S6-S17. DOI: 10.1016/s1098-3597(05)80084-5
Budesinsky, B. & Svecova, A. (1970). A new metallochromic reagent: Photometric Determination of Cobalt and Scandium. J.Anal.Chim.Acta, 49, 2, pp. 231- 240.
Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesteras:From 3D structure to function. Chem.Biol.Interact 187, pp. 10-22.
El.Saied, F. A., Ayad, M. I., Issa, R. M., & Aly, S. A. (2001). Synthesis and charactersation of Iron(III),Cobalt (II),Nickel(II) and copper(II) Complexes of 4-formylazohydrazoaniline Antipyrine, Polish. J .Chem.,75, 6, pp. 773 – 783.
Exalto, L., Whitmer, R., Kappele, L., & Biessels, G. (2012) An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol 47,pp. 858–864.
Ezeokonkwo, M. A., Ogbonna, O. N., Okafor, S. N., Godwin-Nwakwasi, E. U., Ibeanu, F. N., & Okoro, U. C. (2017). Angular Phenozaxine Ethers as Potent Multi-microbial Targets Inhibitors: Design, Synthesis, and Molecular Docking Studies. Front. Chem. 5:107. https://doi.org/10.3389/fchem.2017.00107
Ghaib, A., Ménager, S., Vérité, P., & Lafont, O.(2002). Synthesis of variously 9,9-dialkylated octahydropyrimido [3,4-a]-s-triazines with potential antifungal activity. IL Farmaco,57, 89, pp. 109 – 116.
Guo, J., Liu, H., Zhao, D., Pan, C., Jin, X., Hu, Y., Gao, X.,. Rao, P. & Liu. (2022). “Glucose-lowering effects of orally administered superoxide dismutase in type 2 diabetic model rats”. npj Sci Food, 6, 36, doi: 10.1038/s41538-022-00151-5
Hassan, F., Fayez, M.& Abdalla, S. J. (2020). Synthesis, characterization, anti -bacterial, and antifungal activities of cobalt(II), nickel(II) and copper(II) complexes with 3-thioacetyl-2-amino-1,4-naphthoquinone and 2-benzoyl-3-amino-1,4-naphthoquinone Ligands. Open Journal of Inorganic Non-metallic Materials, 10, pp. 45-61. doi: 10.4236/ojinm.2020.104004.
Heatley, N. G. (1944). A method for the assay of penicillin, Biochem J, 38 (1), pp. 61–65. doi: 10.1042/bj0380061.
Heinosuke, Y.(1967). Infrared Analysis of 2-pyrazolin-5-one Derivatives, Applied Spectroscopy, 23(1), 1969. pp. 22 – 28.
Hitzeman, N. (2006) Cholinesterase inhibitors for Alzheimer’s disease. Am Fam Physician 74, pp. 747–759.
Holm, R. H. (1961). Spectral and magnetic studies of substituted nickel(II) salicylaldimine complexes. In advances in the chemistry of coordination compounds; Kirschner, S., Ed.; MacMillan: New York, pp. 341-349.
Issa, R. M., Abdel-Latif, S. A., & Abdel-Salam, H. A. (2001). Synth. React. Inorg. Met.-Org.Chem.,31, 95-105. DOI. 10.1081/SIM-100001935
Ivanović-Matić, S., Bogojevic, D., Martnivic, V., Petrovic, A., Jovanovic-Stojanov, S., Poznanovic, G. & Grigorov, I. (2011). “Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy”. J. Physiol Biochem., 70, 4, pp. 947-959.
Kottaisamy, C.P.D., Raj, D.S., Prasanth Kumar, V., Sankaran, U.(2021) Experimental animal models for diabetes and its related complications—a review. Lab Anim Res 37, 23. https://doi.org/10.1186/s42826-021-00101-
Lorke, D. (1983). A new approach to practical acute toxicity testing. Archaeology of Toxicology, 54, pp. 275-287.
Madhavan, S. N., Dasan, A., &Raphael, S. J. (2012). Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes”.Journal of Saudi Chemical Society, 16, 1, pp. 83-88.
Mahendran, G., Manickam, M., Murugesh, E., Kumar, R. S., Shanmughavel, P., Prasad, K. J, R.&Bai, V. N.(2014). “In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from swetia corymbosa” . Phytomedicine, 21, 11, pp. 1237-1248.
Maheshwari, D. G.& Shaikh, N.K. (2016). An overview on toxicity testing method”. Int. J. Pharm. Technol. 8, 2, pp. 3834-3849.
Mohahan, K., Athira, C. J., Sindhu, Y.& Sujamol, M. S. (2009).Synthesis, spectroscopic characterization and thermal studies of some lanthanide(III) nitrate complexes with a hydrazo derivative of 4-aminoantipyrine. Journal of rare earths, 27, 5, pp. 705- 710.
Morgan, G.T & Reilly, J.(1913) Synthesis of a red azo compound(Azonol A) from pentan-2,4-dione and 4-aminoantipyrine. Journal of Chemical Society, 103, pp. 808, 808.
Mounyr, B., Moulay, S.& Saad, K. I. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis” 6, 2, pp. 71-79.
Nawar, N. & Hosny, N. M. (2000). Synthesis, spectral and antimicrobial activity studies of o-aminoacetophenone o-hydroxybenzoylhydrazone omplexes. Transition Met. Chem.,25, pp. 1- 8.
Osasenaga, M. I., Abiola, M. A. & Oluseyi, A. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies” Medicina (Kaunas); 53, 6, pp. 365-374.
Owolabi, O.J., Amaechina, F.C., & Okoro , M. (2011). Effect of ethanol leaf extract of newbouldia laevis on blood glucose level of diabetic rats. Tropical Journal of Pharmaceutical Research, 10, pp. 249-254.
Ozmen, U¨ O. & Olgun, G. (2008). Synthesis, Characterization and antibacterial activity of new sulfonyl derivatives and their Ni(II) Complexes. Spectrochimica Acta Part A, 70, pp. 641–645.
Park, S. (2011). A common pathogenic mechanism linking type-2 diabetes and Alzheimer’s disease evidence from animal models. J Clin Neurol , 7, pp. 10–18.
Priyadarshin,i M., Kamal, M. A., Greig, N. H., Realef, M., Abuzenadah, A. M., Chaudhary, A. G. A.& Damanhouri, G. A. (2012) Alzheimer’s disease and type 2 diabetes: exploring the association to obesity and tyrosine hydroxylase.CNS and Neurological Disorders- Drug Targets, 11, pp. 482–489.
Rao, S., Mishra, D.D., Mourya, R. V. & Nageswara, N.(1997). Oxovanadium binuclear (IV) Schiff base complexes derived from aroyl hydrazones having a subnormal magnetic moment. Polyhedron 16, pp. 1825- 1829.
Ravindran, R. (2004). Synthesis and characterisation of iron(III) complexes of 1,2-dihydro-1-phenyl-2,3-dimethyl-4-[2¢,4¢-pentanedione-3¢hydrazono -]pyrazol-5-one, Indian Journal of Chemistry, 43A, pp. 1245-1248.
Rollas, S. & Küçükgüzel, Ş. G. (2007). Biological activities of Hydrazone derivatives.Molecules, 12, pp. 1910-1939.
Sari, N., Nartop, D., Karci, F. & Disli, A. (2008). Novel Hydrazone Derivatives and Their Tetracoordinated Metal Complexes. Asian Journal of Chemistry, 20, 3, pp. 1975-1985.
Sarwar, N., Gao, P., Kondapally Seshasai, S. R., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D. A., Selvin, E., Stampfer,
M., Stehouwer,C. D. A., Lewington, S., Pennells, L., Thompson, A., Sattar, N., White, I. R., Ray, K. K., &Danesh, J. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 9733, pp. 2215-2222.
Sivasankar, B. N. & Gavindaragam, S. (1995). Synth. React. Inorg. Met.-Org. Chem., 25, pp.127 – 131.
Ugwu, D.I., Okoro, U.C., Ukoha, P.O., Gupta, A. & Okafor, S.N. (2018). Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies. Journal of Enzyme Inhibition and Medicinal Chemistry. 33, 1, pp. 405–415.
Van de, W. H., Camenish, G., Folkers, G., Chretien, J. R. & Raevsky, O.A. (1998). Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding characteristics. J. Drug Target 6, pp. 151–165.
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., Koppel, K. D.(2002). Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 45, 12, pp. 2615–2623.
Zdzislaw, B., Jaroslaw, S., Anna, K., Ewa, K., Maria, G. (2009). Heterocyclic Chem. 46, 6, pp. 1396-1403.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.