Physical, Static and Dynamic Mechanical Properties of Waste Paper Reinforced Waste High Density Polyethylene Biocomposite
Keywords:
Waste reuse, paper, high density polyethylene, composite, dynamic mechanical properties, glass transitionAbstract
Tajudeen Kolawole Bello, Muhammed Tijani Isa, Solomon Olayinka Falope
This paper presents the physical, static, and dynamic mechanical properties of a biocomposite fabricated from wastepaper reinforced in waste high-density polyethylene. The produced composites had varying amounts of shredded waste paper from 0 to 50 wt% at an interval of 10wt%. The size-reduced paper was mixed with the waste high-density polyethylene in a two-roll mill set at 160 oC and 79 rev/min. The mixture was then compressed to 4 MPa at 150 oC and allowed to cure at 60 oC for 24 hrs. The results obtained indicated that water absorption increased with filler content due the hydrophilic nature of natural fibers, tensile stress and strain however reduced. Modulus of elasticity recorded the highest value at 40 wt% wastepaper in the composite. Dynamic mechanical analysis revealed that at 40 oC, the 40 wt% recorded the highest storage modulus, greater than unreinforced material by 40%. Higher filler content recorded increase in damping parameter of the materials. Increasing filler content also introduced a new glass transition behavior. The new glass transition (α) Tg was detected between 120 oC and 145 oC. Although elongation increased with temperature, it decreased with filler content. These properties contribute to establishing concept of waste reuse and recycling as a viable technique in sustainable engineering.
Downloads
Published
Issue
Section
Similar Articles
- Itoro Esiet Udo, Imaobong Daniel Ekwere, Idongesit Bassey Anweting, Beneficiation Process of Locally Available Bentonitic Clay: An Efficient Utilization in Drilling Fluid Application in Akwa Ibom State , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Aniekan Udongwo, Oluwafisayomi Folorunso, Resource Recovery from Maize Biomass for the Synthesis of SiO2 Nanoparticles and Crystallographic Analysis for Possible Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Solar Activity and Dynamics of Particles in the Ionosphere , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Richard Alexis Ukpe, Synthesis and Characterization of Calcium Oxide Nanoparticles (CaO-NPs) from Waste Oyster Shells , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola,, Adegboyega Anthony Babajide, Oyebode Daniel Oluwatimilehin, Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Nsikak S. Akpan, Comparative Study of Blends of Polyvinyl Chloride/Poly Methyl-methacrylate and Polystyrene/Poly Methyl-methacrylate using Density, Viscometry and FTIR Methods , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Juliet E. Emudianughe, P. M. Eze, Sunday Utah, Porosity And Permeability Trend In Agbami-Field Using Well Log, Offshore, Niger Delta , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- 1. Olowonefa Richard, 2. Auduson, Aaron Enechojo, Ologe Oluwatoyin, 4. Yusuf Odunsanwo , 5. Agbane Isaac Ojodomo, Geomechanical Characterization and In-Situ Stresses Analysis for Predicting CO₂ Storage Potential: A Case Study of Toba Field, Niger Delta , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Kayode Sanusi, Computational Study of the Reaction Mechanism for the Formation of 4,5-Diaminophthalonitrile from 4,5-Dibromo-1,2-Diaminobenzene and Copper Cyanide , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Abdulmuahymin Abiola Sanusi, Sani Ibrahim Doguwa, Abubakar Yahaya, Yakubu Mamman Baraya, Topp Leone Exponential – Generalized Inverted Exponential Distribution Properties and Application , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
You may also start an advanced similarity search for this article.



