Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors
Keywords:
Artificial Intelligence, Supply Chain Resilience, Critical Infrastructure, Predictive Analytics, Disruption ManagementAbstract
The COVID-19 pandemic, in the midst of stimulated geopolitical and cyber threats, has exposed significant weaknesses in the United States' supply chains, especially when several essential sectors (such as healthcare, energy, food, and semiconductor manufacturing) are considered. Customized supply chain risk management systems is based on non dynamic assumptions, non-automated analysis, and outdated or previous-looking data. Consequently, the listed approaches have proven inadequate to compensate for complex disruptions and high-velocity. Therefore, the present study establishes and examines an AI-Driven Supply Chain Resilience Framework (AI-SCRF) designed to create anticipatory capabilities, adaptability, and autonomous decision-making in the face of large-scale shocks. The developed AI-SCRF was directed to predictive analytics, digital twins, machine learning and real-time optimization mechanisms that facilitated situational awareness and accelerate recovery. To evaluate its effectiveness, the AI-SCRF was deployed in simulated pandemic-driven shortages of PPE, a cyberattack on the national power grid, and a global transportation shutdown. Its performance was gauged on four important metrics - response time, service level, cost impact reduction, and inventory recovery time - and compared to that of traditional supply chain approaches. Paired sample t-tests quantitative analysis revealed statistically significant improvement across all measures (p < 0.01). The AI solution reduced mean response time by 45 hours (t = 12.16, p = 0.0073), increased service levels by 32.7 percentage points (t = –24.49, p = 0.0017), improved cost impact reduction by 35% (t = –42.04, p = 0.0006), and reduced inventory recovery time by 6.67 days (t = 11.71, p = 0.0077). All improvements were accompanied by very large effect sizes (Cohen's d > 6.7), and 95% confidence intervals confirmed the robustness of the improvements. The findings demonstrate the transformative potential of AI-enabled systems in constructing supply chain resilience. The AI-SCRF not only addresses the real-time visibility and agility gaps of traditional systems but also provides an extensible framework suitable for emerging threats such as AI-enabled cyberattacks and climate-driven disruptions. The research findings have national policy implications, augmenting strategic initiatives such as Executive Order 14017 and the CHIPS and Science Act, and providing a blueprint for the design, governance, and deployment of smart supply networks for critical infrastructure sectors
Most read articles by the same author(s)
- Forward Nsama, Development of Sustainable Finance Strategies for Climate-Resilient Infrastructure Investments Across U.S. States , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
Similar Articles
- Dahunsi Samuel Adeyemi , Autonomous Response Systems in Cybersecurity: A Systematic Review of AI-Driven Automation Tools , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Sameul Awolumat, Baernadette Tosan Fregene, Temporal Variability and Predictors of Fish Catch (2009-2011) in the Niger and Benue Rivers: Implications for Contemporary Natural Resources Management in Kogi State, Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Enock Aninakwah, Isaac Aninakwah , Emmanuel Yeboah Okyere, Quantitative Analysis of Plastic Waste Accumulation in Coastal Ghana: Implications for Waste Management , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Enhanced Firefly Algorithm Inspired by Cell Communication Mechanism and Genetic Algorithm for Short-Term Electricity Load Forecasting , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Emmanuel Oluwemimo Falodun, Faith, Technology, and Safety: A Theoretical Framework for Religious Leaders Using Artificial Intelligence to Advocate for Gun Violence Prevention , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Edoise Areghan, From Data Breaches to Deepfakes: A Comprehensive Review of Evolving Cyber Threats and Online Risk Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Robinson Ogochukwu , Comprehensive Review of Artificial Intelligence Contributions to Understanding Music, Religion, and Influencing Future and Emerging Global Trends Robinson Ogochukwu Isichei , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



