Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review
Keywords:
Machine learning, deep learning, intrusion detection systems, effectiveness, intrusion detectionAbstract
While there are several benefits of machine learning (ML) algorithm for intrusion detection, it has been established that there are other issues like time span and classification of data. Thus, this study conducted a systematic review on the effectiveness of machine learning models in intrusion detection systems. Using the meta-synthesis research design, the study adopts a systematic literature review approach. Different databases (Web of Science, Scopus, Google Scholar, IEEE Xplore, and CINAHL) were consulted and the search techniques required the use of Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA). Data were extracted from the nineteen final selected studies, using the data extraction table. Results showed that the commonly used ML models include Random Forest (RF), Support Vector Machine (SVM), Decision Trees (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Gradient Boosting, and AdaBoost. Findings showed that the performance metrics used to measure the effectiveness of ML-enhanced intrusion detection systems include accuracy, precision, recall, F1-score, error margin, false positive rate (FPR), false negative rate (FNR), and area under the ROC curve (AUC). It was demonstrated that ML algorithms perform well in detecting various cyber intrusions. The datasets used for training machine learning models include KDD Cup 99, NSL-KDD, UNSW-NB15, Kyoto, CICIDS2017, and Wireless Sensor Network Dataset (WSN-DS). The challenges associated with the application of ML algorithms for intrusion detection systems include data imbalance, high dimensionality, and feature selection complexities. The study concludes that machine learning models have the capacity to detect various cyber intrusions.
Downloads
Published
Issue
Section
Similar Articles
- Christianah Oluwabunmi Ayodele, Esther Oludele Olaniyi, Chukwuebuka Francis Udokporo, Applications of AI in Enhancing Environmental Healthcare Delivery Systems: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Olumide Oni, Kenechukwu Francis Iloeje, Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Nsikan Ime Obot, Busola Olugbon, Ibifubara Humprey, Ridwanulahi Abidemi Akeem, Equatorial All-Sky Downward Longwave Radiation Modelling , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Abubakar Tahiru, Oluwasanmi M. Odeniran, Shardrack Amoako, Developing Artificial Intelligence-Powered Circular Bioeconomy Models That Transform Forestry Residues into High-Value Materials and Renewable Energy Solutions , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Franklin Akwasi Adjei, Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.