Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods


  • John Paul Shinggu Federal University Wukari, Taraba State, Nigeria
  • Emmanuel Edet Etim Federal University Wukari, Taraba State, Nigeria
  • Alfred Ikpi Onen Federal University Wukari, Taraba State, Nigeria


Computational chemistry, Astrochemistry, Oxirene, Ethynol, Ketene


Communication in Physical Sciences, 2023, 9(2):93-105

Authors: John Paul Shinggu, Emmanuel Edet Etim * and Alfred Ikpi Onen

 Received: 18 January 2023/Accepted 24 April  2023

The study of isomers of C2H2O has been the focus of numerous experimental and theoretical studies because of their significance in atmospheric chemistry, combustion processes, astrochemistry and other fields of science. ketene is a known interstellar molecular specie amongst the C2H2O isomeric group. In C22O isomersIn this study, we employed different computational methods gaussian-4, gaussian-3, gaussian 2, Moller-plessets-2 (G4, G3, G2 and MP2) and W2U to investigate the properties (structural and spectroscopic parameters) of all the possible isomers of the C2H2O isomeric group with the aim of attempting to bridge the gap between theory and experiment. We calculated the bond lengths, bond angles, vibrational frequencies, rotational constants, dipole moments and standard enthalpies of formation for each of the isomers using the various computational methods listed above. The results show that some computational methods effectively elucidate the properties of C2H2O isomers and provide accurate results as compared to others. The results obtained indicated that theoretical calculations are informative in the provision of explanation for several molecular properties of the isomers.


Download data is not yet available.

Author Biographies

John Paul Shinggu , Federal University Wukari, Taraba State, Nigeria

Department of Chemical Sciences

Emmanuel Edet Etim, Federal University Wukari, Taraba State, Nigeria

Department of Chemical Sciences

Alfred Ikpi Onen, Federal University Wukari, Taraba State, Nigeria

Department of Chemical Sciences


Abplanalp, M. J., Gozem, S., Krylov, A. I., Shingledecker, C. N., Herbst, E., & Kaiser, R. I. (2016). A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules. Proceedings of the National Academy of Sciences, 114, 28, pp. 7727-7732.

Chuang, Ko-Ju & Fedoseev, G. & Qasim, Danna & Ioppolo, Sergio & Jäger, C. & Henning, Th & Palumbo, Maria Elisabetta & Dishoeck, E.F. & Linnartz, H.. (2020). Formation of complex molecules in translucent clouds: Acetaldehyde, vinyl alcohol, ketene, and ethanol via "nonenergetic" processing of C2H2 ice. Astronomy & Astrophysics. 635. doi: 10.1051/0004-6361/201937302.

Cramer, C. J. (2013). Essentials of computational chemistry: theories and models. John Wiley & Sons.C. J. Cramer, “Essentials of Computational Chemistry: Theories and Models” 2nd ed.; John Wiley & Sons, Ltd.: West Sussex, England, 1998.

Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (1997). Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. The Journal of Chemical Physics, 106, 3, pp. 1063-1079.

Curtiss, L. A., Redfern, P. C., & Raghavachari, K. (2007). Gaussian-4 theory using reduced order perturbation theory. The Journal of Chemical Physics, 127, 12, 124105, https://doi.org/10.1063/1.2770701

Curtiss, Larry & Redfern, Paul & Raghavachari, K. (2007). Gaussian 4 theory. The Journal of Chemical Physics. 126. 084108, doi:10.1063/1.2436888.

Etim, E. & Arunan, E. (2016). Interstellar isomeric species: energy, stability and abundance relationship. European Physical Journal Plus, 131, 449, https://doi.org/10.1140/epjp/i2016-16448-0.

Etim, E. E., Gorai, P., Das, A., & Arunan, E. (2017). Interstellar protonated molecular species. Advances in Space Research, 60, 3, pp. 709-721.

Etim, E. E., Oko, G. E., Onen, A. I., Ushie, O. A., Lawal, U., & Khanal, G. P. (2018). Computational studies of sulphur trioxide (SO3) and its protonated analogues. Journal of Chemical Society of Nigeria, 43, 2, https://journals.chemsociety.org.ng/index.php/jcsn/article/view/153.

Etim, E. & Asuquo, J. & Ngana, O. & Ogofotha, G.. (2022). Investigation on the thermochemistry, molecular spectroscopy and structural parameters of pyrrole and its isomers: a quantum chemistry approach. Journal of Chemical Society of Nigeria, 47. 10.46602/jcsn.v47i1.704.

Etim, Emmanuel & Khan, M. & Godwin, Onos & Ogofotha, G.. (2021). Quantum Chemical Studies on C4H4N2 Isomeric Molecular Species. Journal of the Nigerian Society of Physical Sciences. 3. Pp. 429-445. 10.46481/jnsps.2021.282.

Jensen, E. (1998). An introduction to computational chemistry. 2nd Edition, John Wiley and Sons

Gorai, P., Das, A., Das, A., Sivaraman, B., Etim, E. E., & Chakrabarti, S. K. (2017). A search for interstellar monohydric thiols. The Astrophysical Journal, 836 doi:10.3847/1538-4357/836/1/70.

Guélin, M., & Cernicharo, J. (2022). Organic molecules in interstellar space: Latest advances. Frontiers in Astronomy and Space Sciences, 9, pp. 787567.

Hudson, R. L., & LOEFflER, M. J. (2013). Ketene formation in interstellar ices: a laboratory study. The Astrophysical Journal, 773, 2,109. doi:10.1088/0004-637X/773/2/109

Keith, J. A., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Müller, K. R., & Tkatchenko, A. (2021). Combining machine learning and computational chemistry for predictive insights into chemical systems. Chemical Reviews, 12, 16, pp. 9816-9872.

Frisch, M. J. ., Trucks, G. W. & Schlegel, H. B. (2009). Expanding the limits of computational chemistry, Gaussian09: RevC.01, Gaussian, Inc., Wallingford CT(2009).

Xiaoyue, M. (2022). Development of computational chemistry and application of computational methods. Journal of Physics: Conference Series. 2386. 012005, doi:10.1088/1742-6596/2386/1/012005

Tanaka, K. & Yoshimine, M. (1980). An ab initio study on ketene, hydroxyacetylene, formylmethylene, oxirene, and their rearrangement paths. Journal of American Chemical Society, 102, pp. 7655–7662. doi:10.1021/ja00546a006

Turner, A. M., Koutsogiannis, A. S., Kleimeier, N. F., Bergantini, A., Zhu, C., Fortenberry, R. C., & Kaiser, R. I. (2020). An experimental and theoretical investigation into the formation of ketene (H2CCO) and ethynol (HCCOH) in interstellar analog ices. The Astrophysical Journal, 896, 1, 88, doi 10.3847/1538-4357/ab8dbc

Weisenburger, G. A., Barnhart, R. W., Clark, J. D., Dale, D. J., Hawksworth, M., Higginson, P. D., ... & Tickner, D. L. (2007). Determination of reaction heat: A comparison of measurement and estimation techniques. Organic Process Research & Development, 11, 6, pp. 1112-1125.L.

Zöllner, M. S., Saghatchi, A., Mujica, V., & Herrmann, C. (2020). Influence of electronic structure modeling and junction structure on first-principles chiral induced spin selectivity. Journal of Chemical Theory and Computation, 16, 12, pp. 7357-7371.