Enhancing Data Provenance, Integrity, Security, and Trustworthiness in Distributed and Federated Multi-Cloud Computing Environments
Keywords:
Data Provenance, Cloud Security, Blockchain-based Integrity, Privacy-Preserving Computation and Regulatory Compliance in Cloud ComputingAbstract
Due to the increasing trend in distributed cloud environments, strong data provenance and integrity practices are even more important than before to ensure answers to security and traceability requirements as well as compliance. The new challenges, developments, and best practices in monitoring and security of data for cloud systems are discussed in this paper. Key challenges include scalability limitations, privacy vs. transparency trade-offs, and regulatory compliance issues. To address these concerns, blockchain-based provenance tracking, AI-driven anomaly detection, cryptographic hashing, and privacy-preserving techniques such as homomorphic encryption and secure multiparty computation (SMPC) have emerged as innovative solutions. The study also examines real-world implementations in healthcare, finance, and supply chain management, demonstrating how organizations leverage provenance tracking to enhance trust, security, and operational efficiency. Additionally, the paper discusses standardization efforts such as W3C PROV and ISO 27037, which aim to improve interoperability and legal compliance. Moving forward, advancements in federated learning, decentralized identity management, and quantum-resistant cryptography will play a crucial role in enhancing provenance tracking and ensuring secure cloud ecosystems. By integrating AI-driven monitoring, blockchain scalability solutions, and adaptive compliance frameworks, organizations can build resilient, transparent, and tamper-proof data management systems in an increasingly digital world.
Downloads
Published
Issue
Section
Similar Articles
- Aniekan Udongwo, Monitoring, Assessment, and Remediation of Heavy Metal Contamination: Techniques, Strategies, and Policy Frameworks , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Rakiya Haruna, M. A Saleh, S. Hashim, Radon in soil gas of Johor, Malaysia , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Franca Amaka Nwafor, Augustine Friday Osondu Ador, Stress Concentration at a Sharp Corner of an Elastic Strip under Anti-Plane Strain , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Onanuga Omotayo Aina, Titus Morrawa Ryaghan, Bello Musa Opeyemi, Momoh Daniel Clement, Goat Horn Biochar as a Low-Cost Adsorbent for the Removal of Cadmium and Zinc ions in Aqueous Solution , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Agada Livinus Emeka, Adetola Sunday Oniku, Osita Meludu, Evaluation of Groundwater Potential in Gashua Northeast Nigeria, Using Electrical Resistivity Method , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Emmanuel Michael Umoh, Edidiong Sunday Sam, The Recycling of Sawdust Waste into Particleboard Using Starch-Based Modified Adhesive , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Dr Fatai Afolabi, Mr Ismaila Jide Olawale, Professor Sunday 0. 0ladoye, Physicochemical, Phytochemical and Gas Chromatography- Mass Spectrometric Analyses of Gmelina Arborea Root Hexane Extract , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Okoro Gladys Ihuoma, Nnochiri Ifeoma U., Design and Implementation of an IoT Microcontroller Power Protection and Control System , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Aramide Ajayi, Anuoluwapo Rogers, Emmanuel Egyam, Justin Nnam, Chidinma Jonah, Leveraging Machine Learning for Predictive Analytics in Mergers and Acquisitions: Valuation, Risk Assessment, and Post-Merger Performance , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Oyebola Olusola Olurotimi, Belewu Fatai Damilola, Balogun Rilwan Oluwanishola,, Adegboyega Anthony Babajide, Oyebode Daniel Oluwatimilehin, Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
You may also start an advanced similarity search for this article.



