AI-Driven Wealth Advisory: Machine Learning Models for Personalized Investment Portfolios and Risk Optimization
Keywords:
ML, Portfolio Optimization, Risk Management, Robo-Advisory, Deep Reinforcement Learning, Financial TechnologyAbstract
This study develops and evaluates an integrated machine learning framework for personalized wealth advisory services that optimizes portfolio allocation while incorporating individual risk profiles, financial goals, and behavioral preferences. We employ a hybrid architecture combining deep reinforcement learning with ensemble methods Random Forest, XGBoost, and LSTM networks to analyze historical market data spanning 2008 to 2022, investor characteristics from a sample of 15,000 individuals, and comprehensive macroeconomic indicators. The framework integrates Modern Portfolio Theory with behavioral finance principles and implements dynamic risk assessment through conditional value-at-risk optimization. The proposed AI-driven system demonstrates superior performance metrics: a 23.4% improvement in risk-adjusted returns (Sharpe ratio: 1.84 versus 1.49 for traditional advisory approaches), 31% reduction in portfolio volatility, and 89.3 % accuracy in risk tolerance classification. The personalization engine successfully adapts to changing market conditions with an average rebalancing efficiency of 94.7%. Component analysis reveals that sophisticated risk profiling, return prediction via LSTM-Attention networks, and reinforcement learning optimization each contribute meaningfully to final performance. Stress testing during major market crises demonstrates superior downside protection, with maximum drawdowns averaging 4.5 percentage points lower than traditional benchmarks. This research contributes a novel multi-agent learning architecture that bridges the gap between algorithmic portfolio optimization and human-centric financial advisory, providing empirical evidence for AI’s role in democratizing sophisticated wealth management services while maintaining interpretability and regulatory compliance through SHAP-based explainability mechanisms.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
Similar Articles
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Enhanced Firefly Algorithm Inspired by Cell Communication Mechanism and Genetic Algorithm for Short-Term Electricity Load Forecasting , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Tope Oyebade, Spatio-Seasonal Evaluation of Heavy Metal Pollution, Water Quality, and Ecological Risk in Lake Chad Ecosystem , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Kayode Stephen Ojo, Moruf Busari, Adeyemi Emmanuel Adeniji , Adebowale Babatunde Adeloye , Combination-Difference Synchronization of Fractional Order Chaotic Duffing Oscillator and Financial Systems With Parameter Mismatch , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Tope Oyebade, Samuel Babatunde, Environmental Chemistry of Radioactive Waste Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Emeka Chima Ogoko, Aletan, Uduak Irene, Osu Charles Ikenna, Henrietta Ijeoma Kelle, Nnamdi Ibezim Ogoko, Heavy Metal Status and Health Risks Assessment of Some Local Alcoholic and Non-Alcoholic Beverages Consumed in Aba, Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Umar Dangoje Musa, Eloayi David Paul, Sani Uba, Nsikan Nwokem, Sani Danladi, Risk Assessment of Selected Metallic Pollutants in Fish from Zuru dam, Kebbi State, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Rashida Adamu Bulkachuwa, Bello Y. Idi, Musa Muhammad Salihu, Abdullahi Lawal, Salisu Tata, Evaluation of Excessive Lifetime Cancer Risk Due to Gamma Radiation on Rocks in Shira Village, Bauchi State Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Dahunsi Samuel Adeyemi , Autonomous Response Systems in Cybersecurity: A Systematic Review of AI-Driven Automation Tools , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Ademilola Olowofela Adeleye, Oluwafemi Clement Adeusi, Aminath Bolaji Bello, Israel Ayooluwa Agbo-Adediran, Intelligent Machine Learning Approaches for Data-Driven Cybersecurity and Advanced Protection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
You may also start an advanced similarity search for this article.



