Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems
DOI:
https://doi.org/10.4314/cvhgc932Keywords:
Solution, real world problem, Cloud computing, ML, predictive analysis, scalability, automationAbstract
This study presents a framework for harnessing cloud computing and machine learning (ML) to address real-world challenges in predictive maintenance, anomaly detection, and sentiment analysis. Leveraging cloud platforms such as AWS and Microsoft Azure, the framework processes large-scale datasets, enabling scalable and efficient solutions across various industries. In the predictive maintenance use case, a machine learning model achieved an accuracy of 92%, precision of 89%, recall of 94%, and an F1 score of 91%, demonstrating its capability to predict equipment failures with high reliability. For anomaly detection, network traffic data was analyzed, yielding a precision of 89%, recall of 85%, and an F1 score of 87%, illustrating the model's efficiency in identifying security threats. In the sentiment analysis task, a subset of 100,000 social media posts was processed, revealing that 45% of the posts were classified as positive, 35% neutral, and 20% negative. The high confidence levels in sentiment predictions, ranging from 85% to 98%, underscore the accuracy and effectiveness of the employed natural language processing (NLP) models. The results align with contemporary studies, which highlight the transformative impact of cloud-based ML systems in enhancing operational efficiency, real-time decision-making, and customer satisfaction across diverse domains (Kairo, 2024;Ucaret al., 2026; Hassan et al., 2024). These findings underscore the potential of combining cloud computing with advanced machine learning algorithms to drive automation, reduce operational costs, and optimize business processes in the digital era
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Edoise Areghan, From Data Breaches to Deepfakes: A Comprehensive Review of Evolving Cyber Threats and Online Risk Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- David Adetunji Ademilua, Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, AI-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- David Adetunji Ademilua, Advances and Emerging Trends in Cloud Computing: A Comprehensive Review of Technologies, Architectures, and Applications , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
Similar Articles
- Godwin Okumagbe Aigbadon, Azuka Ocheli, Tope Shade Alege, Esther Onozasi David, Petrological, palynological analysis and Geochemistry of Maastrichtian Patti Shale in some parts of the southern Bida Basin, Nigeria: Implications for provenances and hydrocarbon studies , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Henry Ekene Ohaegbuchu, Obinna Christian Dinneya, Chukwunenyoke Amos-Uhegbu, Paul Igienekpeme Aigba, Groundwater quality index (GQI) assessment of 12 wells in a rural area , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Chinwendu Olive Ozoeze, Okenwa Uchenna Igwe, Isolation and Characterizations of a Pentacyclic Glycoside from Methanolic Fraction of Allium sativum (Purple Garlic) Bulbs , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Yakubu Mohammed, Habu Tela Abba, Mustapha Suleiman Gimba, Determination of the Gross Alpha and Beta Activity Concentration in Groundwater from Damaturu , Communication In Physical Sciences: Vol. 8 No. 2 (2022): VOLUME 8 ISSUE 2
- Joseph Amajama, Ahmed Tunde Ibrahim , Julius Ushie Akwagiobe, Influence of Atmospheric Temperature on the Signal Strength of Mobile Phone Communication , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Benjamin Odey Omang, Microchemical characterization and stream sediment composition of alluvial gold particles from the Rafin Gora drainage system, Kushaka schist belt, North Western Nigeria , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Ola-Buraimo Abdulrazaq Olatunji. , Umar Hamida, Geochemical Properties of Kalambaina Formation: Implication on Limestone and Marlstone Qualities for Industrial Uses, Sokoto Basin, Nigeria , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- S.C Ezugwu, Structural and Optical Properties of Pva Capped Nickel Oxide Thin Films Prepared by Chemical Bath Deposition , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.



