Mathematical Modelling of an Investor’s Wealth with Different Stochastic Volatility Models
Keywords:
Optimal portfolio distribution, stochastic volatility, Ito’s lemma, Hamilton Jacobi Bellman equation, financial market.Abstract
This paper investigates the application of various stochastic volatility models in determining optimal investment strategies in the stock market. The study explores the geometric Brownian motion (GBM), constant elasticity of variance (CEV), modified CEV (M-CEV), and Heston volatility models. Each model offers a unique perspective on volatility dynamics and option pricing. The research formulates the Hamilton-Jacobi-Bellman (HJB) equations for each model and employs the Legendre transformation method to convert them into linear partial differential equations (PDEs). The quadratic utility function is utilized to derive optimal portfolio distributions under each model. Numerical simulations are conducted to analyze the impact of market parameters such as appreciation rate, volatility, interest rate, elasticity parameter, tax, and investor's wealth on the optimal portfolio distribution. The results indicate that optimal investment strategies vary significantly based on market conditions and investor preferences. Overall, this study provides valuable insights into the dynamic nature of financial markets and offers practical guidance for portfolio optimization and risk management strategies
Most read articles by the same author(s)
- Amadi Ugwulo Chinyere, Modelling Glucose-Insulin Dynamics: Insights for Diabetes Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Amadi Ugwulo Chinyere, Modelling Glucose-Insulin Dynamics: Insights for Diabetes Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
Similar Articles
- Nyeneime William Akpanudo, Ojeyemi Matthew Olabemiwo, Pore Parameters Analysis of Echinochloa pyramidalis leaf Dopped Silver Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Yakubu Isa, Radiya Muhammad Said, Juliet Wallen Piapna, Abdulhaq Bashir, Development and Applications of the Type II Half-Logistic Inverse Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Idayat Abubakar Salau, Aminu Suleiman Mohammed, Hussaini Garba Dikko, Type I Half-Logistic Exponentiated Kumaraswamy Distribution With Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- A. E. Usoro, Comparing the Performance of Alternative Generalised Autoregressive Conditional Heteroskedasticity Models in Modelling Nigeria Crude Oil Production Volatility Series , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Jibril Yahaya Kajuru, Hussaini Garba Dikko, Aminu Suleiman Mohammed, Aliyu Ibrahim Fulatan, Generalized Odd Gompertz-G Family of Distributions: Statistical Properties and Applications , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Kolawole Ismail Adekunle, Abubakar Yahaya, Sani Ibrahim Doguwa, Aliyu Yakubu, On the Exponentiated Type II Generalized Topp-Leone-G Family of Distribution: Properties and Applications , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Ayomiposi Sodeinde, Oluwafemi Orekoya, Daniel Jayeoba, Oyebade Adepegba, Effect of Green Information and Communication Technology on Survival of Electricity Distribution Companies in Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Samson Osinachi Nwadibia, Henry Patrick Obong, Ephraim Okechukwu Chukwuocha, Analytical Solutions of the Schrodinger Equation with q-Deformed Modified Mobius Square Potential Using the Nikiforov-Uvarov Method , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.