A Mathematical Model of Fluid Dynamics in the Ear due to External Noise
Keywords:
Noise, Cochlea, Potential Theory, Fluid motion, HearingAbstract
A mathematical model of fluid dynamics in the Cochlea was formulated and solved using the potential flow theory. The obtained solutions of the model representing the flow in the Cochlea shows that the flow looks chaotic, but in reality, it is so because of the multi-dimensional nature of the variables associated with noise. Also determined is the nature of the flow at both chambers of the cochlea where we saw that the magnitudes of the velocity potentials are the same with only a difference in sign denoting their positions in relation to the basilar membrane. We observed that the velocity potential in the horizontal axis increases with distance front the base of the basilar 'membrane when the flexural rigidity varies as the distance increases. Other analyses were also carried out to confirm the experimental evidences about the effect of noise in the ear.
Downloads
Published
Issue
Section
Similar Articles
- Faith Osaretin Osabuohien, Review of the Environmental Impact of Polymer Degradation , Communication In Physical Sciences: Vol. 2 No. 1 (2017): VOLUME 2 ISSUE 1
- Nyeneime William Akpanudo, Ojeyemi Matthew Olabemiwo, Pore Parameters Analysis of Echinochloa pyramidalis leaf Dopped Silver Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Comfort M. Ngwu, Adeniji Moshood Oluwaseyi , Chioma Ikechi Harbour , The Effects of Microplastics and its Additives in Aquatic Ecosystem - A Review , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Richard Alexis Ukpe, The Investigation of the Corrosion Inhibition Efficiency of Aqueous extract of Vernomia Amygdalina for Mild Steel In Various Concentrations of HCl , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- John P. Shinggu, Emmaneul Etim Etim, Alfred Onen, Protonation-Induced Structural and Spectroscopic Variations in , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Efe Kelvin Jessa, The Role of Advanced Diagnostic Tools in Historic Building Conservation , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Aaron Enechojo Auduson, Abdullahi Emmanuel Bala, Kizito Ojochenemi Musa,, Mary Melemu Shaibu, Michael Adewale Ibitomi, Ijeoma Milicent Agbo-Okiyi, Baba Aminu Muawiya, Fabian Apeh Akpah, Philomina Okanigbuan, Ifeanyi Obihan, Integrated Geoscientific Techniques for Water Resource Potential: A Case Study of Felele Campus, Federal University Lokoja , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Isah Muhammad, Gafar Matanmi Oyeyemi, Generalized Variance Estimator using Two Auxiliary Variables under Stratified Random Sampling , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.