Lattice Instability in metallic elements: A Review
DOI:
https://doi.org/10.4314/k75fqc47Keywords:
Lattice instability, martensitic transformation, phase transition, phononsAbstract
This work presents a comprehensive review of lattice instability in metallic elements, highlighting the underlying factors, types, and consequences on material properties. Lattice instability, a critical phenomenon influencing the mechanical, thermal, electrical, and magnetic behavior of metallic systems, is driven by internal factors such as crystal structure, electron-phonon interactions, chemical bonding, and magnetic properties, as well as external factors like temperature, pressure, alloying, and mechanical stress. The study delves into phonon softening and phonon dispersion curves, emphasizing their roles in dynamic instabilities, with stability criteria expressed as ω²(q, s) > 0 for all wave vectors and polarizations. Notable cases, including the dynamic instability of face-centered cubic (fcc) tungsten near the Brillouin zone boundaries, underscore the complexity of lattice stability across different scales. The consequences of lattice instability, such as phase transformations, changes in conductivity, mechanical property alterations, and material degradation, are explored in detail. The review emphasizes the importance of integrating experimental techniques and computational modeling to capture phonon behavior and predict lattice instability more accurately. This work provides insights for developing advanced metallic materials with enhanced stability and tailored properties, paving the way for their application in diverse technological sectors.
Most read articles by the same author(s)
- Kelechi K. Ochommadu, Nwamaka I. Akpu, Okhuomaruyi D. Osahon, Comparative Evaluation of Bone and Some Materials Used as Bone Tissue Substitutes in Radiotherapy and Radiological Applications , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
Similar Articles
- Samuel Eguom Osim, Benefit Onu, Evaluation of Growth and Nutrient Profiles of Phaseolus vulgaris L. in Soil Treatment with Paint Waste Water , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
You may also start an advanced similarity search for this article.



